Transmitter diversity in CDMA systems

M. Gómez, V. Hag, J. Lainé, F. Willame

Coordinator : S. Ben Slimane

Presentation outline

1.Background and principles

2.System model and implementation

3.Simulations and results

4.Conclusions and further work

1. Background and principles

Framework

- Cellular DS-CDMA system
- Alamouti code (transmitter diversity)
- Capacity (interference) of
 - Single antenna system (SAS)
 - Simple transmitter diversity (STD)

SAS DS-CDMA link

STD DS-CDMA link

Two transmit antennas

Alamouti's diversity technique

Transmission

	Antenna 1	Antenna 2
t	S ₁	S ₂
t + T _b	- S ₂ *	S ₁ *

Reception

- Combination of signal over 2 symbols
- Requires channel estimation

2. System model and implementation

System model

Static users in hexagonal cell(s) - uplink

Constant Received Power (CRP)

Slow and fast (Rayleigh) fading

• Interference \rightarrow determines capacity

Implementation

MATLAB simulation

Link level (deals with the signals)
BPSK, orthogonal codes
Transmit/receive all the users' data

Variable number of cells and users

3. Simulations and results

Simulation conditions Measurement : BER (average and CDF) Network with 1, 7 or 9 cells 1-120 active mobile users Synch'd / unsynch'd signals at BS

Synchronous case

Validate our simulator : 1cell, 64 users
Average BER for 9 cells

No sync : average BER (9 cells)

Number of users/cell @ 2% BER : SAS 4, STD 6

Outage and capacity (9 cells)

Capacity for 2% BER and 85% availability : SAS 2, STD 4.5

Capacity for 85% availability

• 7 and 9 cells give same results

TITL	1 cell	9 cells
STD	10	4.5
SAS	4	2

4. Conclusions and further work

Conclusions

Two sources of interference
 no synch. → intra-cell interference
 multiple cells → inter-cell interference

 For both types of interference, STD performs twice better than SAS, both in terms of average BER and capacity

Further work

- Scrambling (long) codes
- Better power control (e.g. DCPC)
- Influence of background noise
- Non-ideal channel estimation would cause additional errors

On the web

A PDF version of the report and the simulator source code are available at:

http://dev.jerryweb.org/projects/cdma-std/

